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FOREWORD.

This report is a detailed explanation of the progress made in

the sampled-data area of Contract No. NAS_-111!6 granted to Auburn

Research Foundation, Auburn, Alabama. The contract was awarded

October 21, 1963 by the Georae C. Harsha11 Space F1i_ht Center,

National Aeronautics and Space Administration, Huntsville, Alabama.

The work reported in this document is the resu]ts of an investi-

gation by Willie L. HcDanie], Jr., Auburn University, of a special

method of anal)sis For a certain class of san_pled-data systems.
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SUMMARY.

The developc;ent of a transform for analyzino a special class of

sampled-data systems is given. The transform, called the x-transform,

is applicable to sampled-data systems which have a11 samplers followed

by zero-order hold devices.
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I. INTRODUCTION

The field of sampled-data systems has been of increasing impor-

tance and interest to engineers and scientists over the past fifteen

years. Many text books on digital and sampled-data control systems

have been written and used in the classroom and industry. The prin-

cipal tool for the analysis and symthesis of sampled-data control

systems in these books is the z-transform.

The z-transform analysis is based on impulse sampling, which

can be only approximated in a real system. In the practical system

the "impulse" is actually a very narrow putse and the normal

z-transform analysis gives results that are actually incorrect if the

sampler is not followed by a data-hold device. The z-transform

analysis gives good results when the practical sampler is followed

by a hold device. The zero-order hold is a common example of such

a device, and it has been described in the literature. 1' 2_ Since

the combination of a sampler and zero-order hold appears in practice

as a composite device, it would seem feasible to develop a transform

theory about this combination.

Ooetsch 3 considered such an approach in a combination of devices

termed the pulse-former and impulse-lengthener. The general theme of

_Superscripts refer to references listed in the Reference section.
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this approach led to the z-transform approach in an open-loop

configuration.

Gardner and Barnes h developed a theory around jump functions.

This approach could be extended to a sampler-hold analysisl however,

it was developed as an aid in the solution of linear difference

equations with constant coefficients.

Farmanfarma 5, 6, 7 recognized the need for an exact method of

analyzing sampled-data systems with finite pulse widths. The p-

transform and its theory were developed, and the method provides an

exact analysis of finite pulsed linear systems. The p-transform

tables included in the references by Farmanfarma make it possible

to compute the output of a finite-pulsed system as a continuous

function of time. It has been shown that as the pulse width p ap-

proaches the sampling period T, the p-transform approaches the ordinary

Laplace transform for continuous systems. Therefore, the p-transform

is a special case of the Laplace transform.

Another effort toward the analysis of systems with finite width

sampling was provided by Tou 8. The development of the T-transform

was based on the delayed z-transform and should be used in

conjunction with the modified z-transform.

The approaches to the analysis of systems through finite pulse

duration samplers have provided the necessary tools for accurate

analyses of sampled-data systems. There is, however, a large class

of systems in which the sampler is followed by a zero-order hold

circuit. It is this class of systems that is considered in this

dissertation.



The purpose of this investigation is the development of the

general theory of a transform, ca]led the x-transform, for a sampler-

hold combination in open-|oop and closed-loop sampled-data control

systems. The stability criteria for such systems are investigated.

The application of the x-transform method of ana|ysis to various

sampled-data systems is a|so investigated.
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II. THE X-TRANSFORM THEORY

In most feedback control systems employing sampled-data, the

high frequency sidebands occurrina as the result of the sampling

operation must be removed before the signal is applied to the contin-

uous part of the system. This step becomes absolutely necessary since

the continuous signa] must be reconstructed from the sampled sianal.

Thus sampled-data systems must possess either inherently or by design

some type of hold device or data reconstruction device. The zero-

order hold circuit is quite popular and has been thoroughly studied

1-2
in the literature,

Definition of the X-Transform

Since the hold device and the sampler may occur as an entity,

it would seem feasible to treat them as such in a transform analysis.

Figure ] shows this combination in block diagram form.

_ i I i i ! i I ! i ! ! I I i I I i ! _ i ! ! ! i _

I
I
!

I

E(s) ! EYe(s)
e(t)

, T
!

I
!

zero
order

hold

I

I
I

IEo(S)

I,eo(t)
I

I
I

_J

Fig. ]. - Sampler and zero-order hold combination.

4
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It is assumed that the sampler is ideal.

zero-order hold (z.o.h.) device is given by

The output of the

= e(,]) u(t) -e(O)u(t-T) + e(T)u(t-T)

- e(T)u(t-2T) + ... (11-i)

Taking the Laplace transform of both sides of equation (If-l) yields

-Ts e(T)e-TS e(T)e -2Tse(O) e(O)e
= + + ... (II-2)

S S S S

Equation (II-2) may be rearranged to give

e(O) + e(T)e -Ts

or

+ e(2T)e "2Ts + ...]
(II-3)

oo
-nTs -(n+l)Ts

Eo(S) = Z e(nT) e Z e(nT) e (II-4)

n=O S n='] s

It is convenient to introduce a change in variable by setting

-nTs
n • e

x - (II-5)
s
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Substituting (II-5) into (II-4) results in

E(x) _ e(nT)(x n n+l
- x )

n=0

(II-6)

0 0
It should be observed that x i l, but x R l/s. Therefore, (II-6) is

E(x) : e(0)(x 0 - x) + e(T)(x - x2)

2 3)+ e(2T)(x - x + ...

: e(0) x0 + x[e(T)- e(0)] + ... (II-7)

By definition_ the x-transform of e(t) is

m

-nTs
e

s

n
- x

(II-8)

Evaluation of Some X-Transforms

Definitions for x-algebra

In the evaluation of x-transforms some manipulations with x will

be necessary. The following definitions are now made and will be

retained for the remainder of the x-transform work:

n -nTs
a. x : e / s (II-9)



Then

m -mTs
b. x = e

P
(If-t0)

-nTs
e -mTs m + n13 m

x x = _ e = x

P s

(II-l])

r

If x
n n-r

is factored from x , the remainder is x
P

or

n r n-r
X -- X X

P
(II-12)

0 O
Note that, while x = l/s, x = 1.

P

The x-transform of a unit step, .u(t)

,3

E(x) = e(O)(x 0 - x) + e(T)(x - x_) + ... (II-13)

: e(O)xO + [e(T)- e(0)] x + ...

0
: x + (1 - 1) x + ...

E(x) = _[u(t_ = x0 (II-14)



The x-transform of a rampf ,e(t) = t

E(x) = O(x 0 - x) + T(x - x2) + 2T'(x 2 - x 3) + ...

= Tx + Tx 2 + Tx 3 + ...

(II-15)

= Tx [1 + Xp + x_ + x_ + ...]

Tx

E(x) _ • - (II-16)

1 - xp

The x-transform of the=exponentiel, e.(t) = e "at

0 -aT x2 e-2aT -aTE(x) : x . x(e - 1) + ( - e ) * ... (If-17)

[ ']E(x) = x0 + (e "aT - I) x (II-iS)

I - e "aT Xp

(x0 - x)
E(x) = • (II-19)

-aT
1 - e Xp

The x-transform of sin a t and cos = t
|,= m J. .tm i

The x-transform for s(nusoids can be obtained from (11-19) by

setting a =-jcd. The /)_ [cos &) t] is the real part of the subsequent

equation and the /_[sln6at] is the lmag,nery part. The results are
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0
x - x+(x 2 - x) cos _ T

_[cos {_ t] = (II-20)
2

2Xp cos _T + 1Xp-

I

I

I.
i

L

I
I

i

!

I

and

x(l sin LOT

[sin (_ t] - Xp) (II-21)

2

- 2Xp cos _aT + 1Xp

A table of x-transforms is provided in Appendix A, where x and

Xp have been made indistinguishable from each other by dropping the

subscript p. If in using this tables it becomes desirable to return

to the x - Xp form of the transforms x appears on]y in the numerator

and x appears only in the denominator. Note that in setting up
P

this table, (II-ll) has been used for eliminating Xp in the numerator.

n

If x in the numerator is factored, it must be factored according to

(II-12); i.e., xn = xr xn'r •
P

Because of the simplicity and usefulness of the power series

method for obtaining the inverse transform, this method is generally

employed. The expansion of E(x) in a power series will be made void

of x , thus eliminating the requirement of distinguishing between x
P

and x . However, when inverting by the partial fraction expansion
P

or by the inversion integral, where x and Xp both appear, it will be

found convenient to distinguish between the two.
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The Inverse X-Transform

Power series method

The inverse x-transform may be obtained through the power series

method. E(x) is expanded in a power series in powers of x. The

coefficient of the term xn corresponds to the change of the value of

the time function e(t) at the n-th sampling instant, as can be seen

from (II-7). The function e(t) is constant between sampling instants.

As an example, consider the x-transform of e(t) = t.

Tx

l - X

E(x) - Tx + Tx 2 + Tx 3 + ... (II-23)

A plot of the inverse of (II-23) is shown in Figure 2.

2T

T

0 T 2T 3T 4T
t

Fig. 2. - Output of a sampled-hold device with a ramp input.
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Equation (II-23) can be rearranged as

E(x) - T(x - x 2) + 2T(x 2 - x 3) + ... (II-24)

In this form the coefficient of each x-difference term is the output

over the corresponding sampling period. Of course the result is the

same as that shown in Figure 2.

The partial fraction method

In the analysis of a system having continuous signals_ the partial

fraction expansion of the Laplace transform of E(s_ where E(s) is a

rational fraction in s, is given as

A B C
E(s) = -- +-- +- + ... (ii-25)

s+a s+b s+c

from which the inverse Laplace transform may be obtained as

e(t) = Ae -at + Be "bt + Ce -ct + ... (II-26)

It would seem that E(x) could be put in a similar form; that is,

A B C
E(x) - +-- +-- + ...

x- a x b x- c

(II-27)

However, an investigation of the x-transform table in Appendix A

reveals that the terms on the right-hand side of (II-27) do not appear

as such. The x-transform of Ae "at is A(x 0 - x)/ (I - e "aT x).
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Therefore_ if each term in the partial fraction expansion is expressed

-aT
in the form of A(x 0 - x) / (l - e x)_ the inverse x-transform may

be expressed as a sum of exponential functions. It is desirable then

to expand E(x) / (x0 x) in the form of (II-27) and then to multiply

each of the expanded terms by (x0 - x). An example of the use of the

partial fraction expansion method for finding the inverse x-transform

is given in Example I in Appendix B.

The inversion formula method

The time function e(t) may be obtained from E(x) by an inversion

formula, which is based on the real inversion formula of the Laolace

transform. The derivation of the inversion formula is as follows:

The inverse transform in s is

I c+j

e(t) - F E(s) e ts ds (II-28)

J2TTj
c-j C_O

The value of e(t) at the n-th sampling instant is

I c+j C_O

f nTs

e(nT) - E(s) e ds (I 1-29)

2TFj
C-j_

The constant c is greater than 0"- where (1- is the abscissa of absolute
" a a

convergence of the Laplace transform. The path for the integration in

the s-plane is shown in Fig. 3a.
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The corresponding path in the Xp-plane is a circle which encloses

all of the singularities of E(x)x; (n+l) / (x 9 - x), x is a pseudo
P

x-transform as defined in (II-lO). It is noted that

A -Ts -1
Xp = e = z (II-30)

where z is the variable of the ordinary z-transform. A detailed

explanation of x is given in the introductory portion of Chapter IV,
P

It is noticed that the path of integration in the s-plane passes

through the periodic strips vertically; therefore_ the integration in

(II-29) may be broken up into a sum of integrals given by

e(nT)

c + (k + _')J_sO0

k=
s

E (s)enTSds (II-31)

where _ = 27T/T. Replacing s by s + jk(_ s alters (II-31) to
s

e(nT)

O_ ?+j Cas/2i S'-"

= L Jc E(s+jk _ s)
2 T_ j k=-oo -j (_s/2

enT(s+jk/_s ) d(s + jk_ s) (II-32)

Interchanging the summation and integration signs and simplifying

(II-32) gives
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e(nT)

c+j (Js/2

2 7T'j k--oo
c-j _Os/2

E(s+jk (Os) e nTs ds (II-3))

However, in normal impulse sampling

, [.. ]
E*(s) : _ L :_s + jk(,_ ) ; eiO) =T s

k--C_

(iz-34)

and (II-33) may be written as

c+j (_s/2

,/e(nT) - E*(s) enTs ds

2FFj
c-j_s/2

(II-]5)

The transfer function of a zero-order hold is

Q(s) =

-Ts
1 - e

Therefore, from Figure I it is seen that

E*(s)

"_(s) _(s)

-Ts
Q(s) 1 - e

(ZI-36)

(II-37)
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Introducing (II-37) into (II-35) and noting that the presence of the

zero-order hold causes the output to be constant between sampling

instants, one obtains

e(nT)
[ u(nT)- u [(n- I)T]]

T
c +j_ /2 nTs

f s _(s) e-Ts
I - e

c - -i s/2 S

ds (II-38)

In the evaluation of (II-38), a change in variable is found to be

convenient. Let

X

P
(II-39)

Then

or

dx

P

ds =

dx
P

m

-TX
P

(II-40)

(II-41)

Substituting (11-39) and (II-41) into (II-38) gives
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luoTuEo Tl]
_ T _ E(x)

7 n+1

2 T["j -(xn - x )Tx
P

dx (II-42)
P

It should be noted that the integrand of (II-42) is a function

only of x . The path of integration, F_I , is the circ]e obtained by
P

mapping the line s = c + j_ from the s-plane onto the Xp-plane as

shown in Figure 3b. The area to the left of c is mapped outside the

circle and the area to the right of c is mapped inside the circle.

Simp]ifying (II-42) gives

1 _r, E(x)xi(°+1) d_0 P
2TCj x x

(II-43)

= - ; Residues of E(x) x_(n+1)/(x 0 - x)

at the poles of x"'n+1"(_
P

The residues in (II-44) may be obtained by the following

relationship:

(II-44)



Res
E(Xp)

(n+l)
x
P

, 0

18

, En+l
- tim x

n ! x--_O dx n P

P P
E(xp) ] 1

n+l

Xp

(II-45)

it is aiso seen that, if [E(x) // (x0 - x)] Xp(n+1)- is expressed in

, the coefficients of

-I
the x term are the residues K , which for a given n is the value of

n

e(t) over the nth sampling instant as was indicated in (II-2h).

The integral of (II-4]) may also be evaluated through the aid

of the contours shown in Figure 3b. Thus,

E(x ) E(x ) /- E(x )

P dxp + _ dXp +
n+l n+l

n+l Xp xXp p

+ _r_ E(Xp)n+l

Xp

dx
P

- 27_j _ Residues of E(Xp)/X; *l

at poles of E(Xp)

dXp

(II-46)
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It may be observed that the integrals along the paths [_a and r_

cancel each other. The integral along _ , which is chosen as a

circle with center at the origin, will be evaluated with R approaching

infinity, thus assuring that all the poles of E(x ) are in the desired
P

region. Therefore, with a change of variable the integral along I_

I

becomes

_2T_" E(ReJ(_ )j de

J Rn ejGn

0

= 0 (II-47)

if E(Rej_) approaches zero as R approaches infinity. Stipulating

this condition on the integral along F22 , (ii-46) becomes

_r. E(xp) _.
dx = -

J x ....
P

Residues of E(Xp) / xn+lP

at poles of E(x )
P

(zi-48)

The inverse x-transform may be obtained by (II-44) or (II-48).

As an example, determine the inverse x-transform of

E(x) =

0
X - X

-aT
1 - e x

P

(II-49)

Usin 9 (II-48), one obtains
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_ I j_ (o_ x) x_(n+l), dx-aT P2 T(" _i (x° - x)(1 - e x )
P

(zl-50)

- (n+l) aT

_. x_ •= - Residues of at x = eaT
P

-(x - • aT)
P

(eaT)-( n+1 ) aT= e

-anT (II-51)
: e

m

The value of e(t) is obtained from (11-51) as

OO

- T. I IIe(t) : e"anT u(t - nT) - u t - (n+l) T (II-52)

n=O

For a second example of the use of the inversion formula see Example 2

in Appendix B.

Theorems of the X-Transform

Addition and subtraction

If el(t) and e2(t) are Laplace transformable and
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E 1 (x) + E2(x )

then

(II-53)

Proof= By definition

_[e1(t) + e2(t) ] = _.

n=O

e l(nt) + e2(nt)] (xn.x n÷l) (II-54)

_[e1(t) + e2(t) ]

two

n+l
= e I(nt) (xn - x

n=O

+ _ e2(nt) (x n

n=O

n+l
- X (II-55)

: E 1(x) + E2(x ) Q.E.D. (II-56)

Multiplication by a constant

If E(x) is the x-transform of e(t), then

(II-57)

Proof= By definition
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. n+l
= ae(nt) (xn x

n=O

(II-58)

cx)

_, n+1
= a e(nt)(x n - x

n=O

(11-59)

= aE(x) Q.E.D. (zi-6o)

Shifti.n_ theorem

= E(x), then

:x-,[,(x__e(0_(x°_x_] (II-61)

Proof: By definition

_[e(t + T)]

O0

:_.e[(°+,)_]
n=O

n+1
(xn - x ) (II-62)

= Xp e (n

n=O

I)T] (xn n+1+ - x )Xp

= X -Ip

n=O

e [(n + ])T] (xn÷1 - xn+2) (II-63)



Let k = n + I. Therefore,
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oo

_[e(t + T)] = xl_l _ e(kT)(xk - x k+l) (II-64)

k=l

Now in order to make the summation over k from zero to infinity, it

is necessary to add and subtract e(O)(x 0 - x). Thus

e(t + T) = Xp - x )

k=O

- e(O)(x 0 - x)] (11-65)

= x "l [ E(x) - e(O)(x _ - x_ Q.E.D. (11-66)

Since (II-66) is in a product form, the subscript p is omitted, but

understood.

_v,v,,o,i I. Tc• ,  L=, Ij = .,^,, ......

_[e(t + 2T)] = X "2 [E(x)- e(O)(x 0 - x)]

-I
- x e(T)(x 0 - x) (II-67)

Proof= Using the Shifting Theorem results in
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/y_Ie(t + 2T)]

1= x e(t + T) - e(t + T)"

(x0 - x) ]

t=O

(I1-68)

Reapp|ying equation (II-6l),

e(0)(x° - x)]

-!
- x e(T)(x3- -- - x) Q.E.D. (II-69)

The extension of Corollary I to _[e(t + roT)]can be made

resulting in

m-I

 io< "L Z '-' -->'°}t + rnT) 1 : X [ r.l_xI - e_,nll(X 0

n=O

Coro|]ar 7 II. If _[e(t)] = E(x), then

_[e(t - nT) u(t nT)]

n #%

: x Etx) (II-71)
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25

_[e(t - nT) u(t - nT)]

m=O

o[(m_n,TJo[(m-o_T]

- m+](x m x ) (II-72)

m=O

el(m-n_T]u[(o-n_T]

. m-n+1(xm'n x ) (II-73)

Let k = m - n. Therefore,

Z_[e(t - nT) u(t - nT)] = x n

oo

e(kT) u(kT) "

k=-n

• k k+l
_x - x ) #TT _1,_

_lJ.-I"_l

However, e(kT) u(kT) = 0 for k < O. Therefore,

e(t - nT) u(t - nT) = x e(kT) u(kT)(xk-x

k=0

)(II-75)

n

= x E(x) Q.E.D. (II-76)
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h r "I

If '_..le(t)l = E(x) and if lira

x-_O
0

× = I

exists, then

m

lim e(t) = lim F E(x)

t-_9 x-_O [ '-0
X - X

Proof: By definition

0
x = l

(II-77)

E(x) I O_

= . _. e(nT)(x n n+l
- X ")

0 0
X - X X - X

n=O

(II-78)

E(x) e(T)(x - x2) e(2T)(x 2 - x 3)

= e(O) ,+ +

0 (x0 (x ox - x - x) - x)

+ ... (II-79)

Taking the limit as x approaches zero of both sides of (II-79) and

0
settin9 x equal to one, results in

lira e(t) - e(9) = lira Q.E.D.(II-S_)

t-->i3 x--_3 x - x x l

n
It may be seen from (II-9) and (II-l,q) that x approaches zero as

nl

T approaches infinity for n _/ O, and x
P

approaches zero as T approaches
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0
infinity; therefore, no distinction is made in x and x . x is

P

independent of T. This can also be seen from the re|ationship

0 0
x = x x . The limit as x approaches zero with x = I also assures

P

that x approaches zero.
P

Final value theorem

If _[e(t)] = E(x), then

w

lim e(t) = tim E(x) I

l (II-81)
t-_c_} x--_l x 0 = 1

Proof: From equation (II-65) and the subtraction theorem, one obtains

[e(t + T)- e{t) 1 -i[ - (0)(x° x)]- E(x)(_-82): x E (x) e
P

Note that the subscript p has been included here_ but it will be shown

later that its inclusion is unnecessary in the application of the

theorem. Rearranging (II-82) gives

_[e(t + T)- e(t) 1 : {x;,.,]

I
- e(O) x- (x _ x) (II-83)

P



However, by definition

_[e(t + T) - e(t) 1

28

k

= lim _. [e(n+1)T

k-_oo
n=O

n+1- e(nT) (xn - x ) (II-84)

--r .... _ _ _ _,VeS

J]L[e(t + T) - e(t)] = lira [- e(q) x!) (I - Xp)

k_

+ e(T)(x 0 - x)(l - x ) + e(2T)(x - x2)(1 - x )
P P

+ . + e(kT) (xk-l k ).. -x)(! -%

+ e [(k + l)T] xk (l- Xp)]
(II-85)

and

le(t+ T) e(t)]

= lim I- e(q) x0 + e(T)(x _

k---+6,o"

- x)

+ e(2T)(x
2 k-1

x ) + ... + e(kT)(x xk) + e[{k+l)T] x k]

(II-86)
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It is observed that, if the limit is taken of each side of (II-86)

as x approaches one with x0 equal to one, (II-86) becomes

lira

x-,_l = e(oo) - e(O)

x0 : I (II-87)

However, from (11-83) one obtains

O([e(t + T)- e(t)] = E(x)

1 x x x
P P P

9
e(r)) x

(11-88)

TaPing the limit of each side of (11-88) as x approaches one with

x0 equal to one gives

+ e( l]
lira E(x)Ix-"l xO= 1

-e(O)

0 (II-89)
x =]

It should be observed that x = x0 x . Therefore, when x approaches
P

one with x3 equal to one, x also approaches one. Equatin 9 the

right-hand sides of (II-87) and (II-89) aires

e(_'a) - e(O) = lira E(x) 1 - e(9) (11-9<))

x---*l I b
X" =
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e(oo) : lira E(x) I

x--_1 I x0 = I

Q.E.D. (zl-gl)

An example of the application of the final value theorem is given

in Example 6, Appendix B.

Complex translation

is E(x), then

: (I - x) E' (xe _+aT) (zz-92)

where E 1(x) is E(x)

| - x

Proof: By definition

°':
,, +anT n

e(nT) e- (x

n=O

n+I
- x ) (IZ-9])

Oo

n=0

e(nT)(e _aT x) n (II-94)

+aT

Let xe- = x19 then
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n
_I_°_o_] -(,-x0_ e(o_x, (_-_

n=O

= (1 - x ) El(x 1) (IZ-96)
P

= (1 - x) Ei (x_ aT) Q.E.D. (II-97)

Examples utilizing the x-transform theorems have been included

in Appendix B.

,Relati0,pship Between X-Transform and Z-Transform

The definition of the x-transform has been given by equation

(II-5). The definition of the z,transform is given in the literature

as

sT
z = e (II-98)

The relationship between the x-transform and the z-transform will now

By definition

- [ - ]E(s) - e(nT) e "nTs e (n+1)Ts (II-99)

n=O s

e(nT) e"nTs
s

n=O

(ii-ioo)
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m

E(s)

-Ts
1 e

s

00

= _. e(nT) e"nTs

n=O

(II-I_)I)

Therefore_

0
X - X

_[e(t_]z-'-x (II-I02)



I!l. THE TRANSFER FUNCTION

The transfer function for a continuous system is G(s) = C(s)/E(s)

and G(s),/ [I + G(s) H(s)] for the closed-loopfor the open-I oop case

case. The transfer function for a sampled-data-hold system in the

open-loop and closed-loop confiauration wi!! now be derived from the

basic biock diaarams for each of the above cases.

The derivation of the open-I0op transfer function depends on the

bloci< diaaram 3 representation of Figure 4. In the x-transform analysis,

I
r

E(s)> ',c(s)>
I I

I I
I
_Fictitious Sa:_p!er I
i I

L n _Hojd_. _J

Fig. 4. - ODen-|ooo sampled-data system.

th_ irish1 _1_ _ _1 ....... ¢^1 ..... _ by - na_-".... z .... I o zero-order d device.

In Fioure Q the zero-order hold is desianated by Q(s). G(s) is the

plant and the continuous outDut is C(s). From the block diaaram of

Figure !t, the fo)1owin 0 equations can be written or defined:

-Ts
1 - e

Q(s) - (III-1)

33



R(s) _ G(s) Q(s)
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(III-2)

GR(S) = _ [gR (t)]

A
= G(s) / s (III-3)

Then

r(t) = L'IER(s)] = gR(t) u(t) - 9R(t - T)u(t-T) (III-4)

Now,

C(s) : R(s) EW(s) (III-5)

Starring (III-5) gives

C*(s) : Re(s) EW(s) (III-6)

where the starred transform indicates normal impulse sampling. Then

_tsj = Q(s) C,(s)

= O.(s) E*(s) R*(s) (III-7)

Therefore_

C(s) = E(s) R_'_(s) (III-B)
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Equation (III-8) gives the relationship between the barred input

and barred output. The open-loop barred transfer function is

C(s)

: R*(s) (III-9)

It is evident that the barred functions may be written directly as

function_ of x, but it is not evident that the same is true for R*(s).

By definition,

R_','(s) : _-_ r(nT) e "nTs

n:O

(III-i0)

From (III-4)

r(t) : OR(t) u(t) - gR(t - T) u(t T) (III-I1)

and

r(nT) : oR(nT) - 9R [(n - l) T1 (III-12)

Substitutina (III-12) into (III-1O) yields

R_"(s)

oo

n:O

e-nTs (III-]3)



36

;T.
n=0 n=0

(III-14)

Now an index• change is made by letting m = n - I in the second

summat ion. Therefore,

RYe(s) = _-_ q_(nT) e "nTs - _ q_(mT) e "(m+l)Ts

n=O m=- 1

(III-15)

However, gR(mT) = 0 for m_O which alters (III-]5) to

R_'_(s) = Z QR(nT)e'nTs "_. gR(mT) e'(m+l)Ts

n=0 m=0

(III-16)

Since the summations are over the same l_mits, (III-16) may be written

as

oo

R_'_(s) : _. gR(nT) [ e-nTs - e'(n+])Ts 1

n--O

(III-17)

From (III-17) and (II-10), it is seen that Re(s) can be expressed

as a function of x . In fact, comparinq (III-]7) with (II-6), it is
p

seen that



_[_.(s_]=i_[0R(s_1
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]
s

= GR(X) (III-18)

where _[G(s) // s] is a function of x only. However, as will be
P

seen, no problems arise from dropping the subscript p in xp. Then

from (III-8),

C(x) = E(x) GR(X) (III-19)

It should be observed from Figure 4 that

C(s) = G(s) E(s) (III-20)

and therefore in view of (III-19),

- E I-C(s) = _ E(s) (III-21)

s

An example wherein (III-19) is used wi]! clarify the definition

of GR(X).
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Examples indicatin_ the use of equation (III-19)

Determination of the output, C(x), for a sampled-hold-data system

with G(s) = 1 and T = I second - It is assumed that a unit step

function is applied at the input and the system is that shown in

Figure 4. From (III-19)

C(x) = E(x) GR(X) (III-22)

E(x) = _Ill = x0 (III-23)

GR(X) : __ : _.

s(s + I)

(x0 - x)
0

X -

-T
I - e x

(III-24)

or

GR(X)

0.632 x

1 - .368 x
(III-25)

Combining (111-23) and (111-25) according to (111-22) yields

C(x)
= xO [ 0.632 X j = 0.632 X

I - .368 X 1 - .368 X

(III-26)
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Using the power series method for taking the inverse of C(x), (III-26)

becomes

2 x 3 4C(x) = 0.632 x + 0.232 x + 0.0855 + 0.0315 x + ...(III-27)

The inverse of (III-27) is p}otted in Figure 5.

clt)

1.03

0.75

0.59

0.25

0

#,#

1
/

/
I

1

I
I

0.98o
o_.9_9 -,-'o._315

D,-96-4-Io.o855

.* !3.232
_9.632

0.632

the system with G(s) = I/ (s+l) and a unit step input.

T 2T 3T 4T 5T 6T 7T

Time in Seconds

Fig. 5. - Output response of a fictitious sample-hold for

,-,_,,,-m=,1 -,_+.-=,_S_,.-m=._aly_ _,_.-_-I_s _',_+°'_ 9i...................................... I "" '- .... Yes

C(z) = 0.632 z"I + 0.864 z"2 + 0.949 z"3

-4
+ 0.980 z + ... (III-28)

These values check the x-transform analysis and are also indicated

in Figure 5.
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Determination of the output t C(x) t for a sampled-hold-data system

l

with G(s) = s-_)and T = I second. - A unit step function is applied

to the input of the system shown in Figure 4. From (III-18)

c(x) -- E(x) GR(X) (III-29)

0
: x (zzz-3o)

: _ = (III-31)

s2 (s+ 1

= _ It- ] + e-t] (III-32)

x x0 - x
0

- x +" (III-33)

l - x I - .368 x

Combining terms,

GR(X)

0.264 x2 + 0.368 x

0.368 x 2 - 1.368 x + I

(zzz-34)

Substituting (III-30) and (111-34) into (III-29) yields

C(x) =

2
0.368 x + 0.264 x

2
1 - 1.368 x + 0.368 x

(III-35)
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Using long division in order to express C(x) in a power series in x

gives

2 x3 4C(x) = 0.368 x + 0.768 x + 0.915 + 0.968 x + ... (III-36)

The inverse of (III-36) is plotted in Figure 6.

3.0

2.5

2.0

1.5

1.0

0.5

i
i

i
f

J
d

I /
d

/
. 2.051

/__

0.915

0.968

c(t)

,." 1.136

#'1"!

,." O.768
/

i
f

- 0.368

.tiJ" I.,._ 0.368

0 T 2T 3T 4T
Time in Seconds

Fig. 6. - Output response of a fictitious samole-hold for

the system with G(s) = l/s(s+l) and a unit step input.

A normal z-transform analysis of this system gives

i z-2 z- 3C(z) = 0.368 z" + 1.136 + 2.05l + -.. (III-37)

The values for the z-transform analysis are also shown in Figure 6,

and they agree with the x-transform evaluation.
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C Iosed-Lc_op

Derivation of the transfer function

The derivation of the transfer function for a closed-loop sample-

hold-data system follows from the block diagram of Figure 7.

Fig. 7. - Closed-loop sampled-data system.

-- ! I

T -___a

The closed-loop transfer function is derived as follows:

m

C(s) = G(s) E(s) (ill-)8)

E(s) = U(s) - H(s) C(s) (III-39)

E(s) = U(s) - H(s) G(s) E(s) (III-4O)

It is seen from (III-20) and (!II-2l), that when the barred

u

transform of a product of the type A(s) B(s) is taken, the result is

w

[A(s) / s] B(s). Thus, barring (III-40) gives

-- __ [ H(s) G(s)] --
E(s) = U(s) - E(s)

S

(III-4])
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m

Solving for E(s) in (III-41), the barred transform of e(t) is given as

__ U(s)

E(s) : (III-42)

H(s) G(s1
] +

S

However, from (III-38) and (III-21) the barred transform of the

system output c(t) is obtained as

C(s) : E(s)

s

(III-43)

Substituting (III-42) into (III-43) yields

m

G(s) ____ s U(s)

C(s) -- (I II-44)

] +

. H(S!s G(s)
/

The x-transform is obtained directly from (III-44). The closed-loop

transfer function is given as

C(x) GR(X )

U(x) I + (GH) (x)
R

(III-45)



where
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GR(X) _ _ G(s) (III-46)

and

(III-47)

If there is unity feedback, then

C(x) GR(X )

U(x) I + G (x)
R

(III-48)

The work in Chapter IV on stability will be based on (III-45)

and systems such as that shown in Figure 7.

Example of x-transform analysis of a closed-loop system

Assume a system such as shown in Figure 7. Let H(s) = I,

I
G(s) - and T = I second. The input is a unit step function.

s(s + I)

It is desired to determine the sampled-hold output response,

From (III-48)
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R(x) U{x)
C(x) - (III-49)

I + R(x)

GR(X) = - s2 (s + 1)

2
0.368 x + 0.264 x

= (III-50)

I - 1.368 x + 0'368 x2

U(x) = _ I-_Is ] - x0 (III-51)

Substituting (111-50) and (III-51) into (111-49) and simplifying yield

0.368 x + 0.264 x 2
C(x) = (III-52)

2
1 - 1.00 x + 0.632 x

From (III-52) it is found that

C(x) = 0.368 x + 0.632 x 2 + 0.400 x 3 + 0.000 x 4

- 0.253 x 5 - 0.253 x6 - 0.093 x7 + 0.067 x8

+ 0.128 x 9 + 0.0859 x 10 + 0.0049 x 11

12 13
- 3.0493 x - 0.0524 x + ... (III-53)

N

c(t) from (III-53) is plotted in Figure 8.
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A z-transform analysis of the same system
10

gives

I -2 3 z-4 • z-5C(z) = 0.368 z" + 1.00 z + 1.40 z" + 1.40 + I 15

-6 -7 -8 z-9 -10+ 0.90 z + 0.80 z + 0.86 z + 0.97 + 1.05 z

-11 -12 z-13+ 1.06 z + 1.01 z + 0.96 + ... (III-54)

The values of (III-54) are also shown in Figure 8. The slight differ-

ences in (III-53) and (III-54) are the result of the number of

significant figures retained in each analysis.

System with Samplers in the Forward

Path and the Feedback Path

Consider the case of a sampler-hold in the forward path and a

sampler-hold in the feedback path, Such a system is shown in Figure 9,

....
u E' (s s_)_."_C_,C

I

T L___I

C _'¢ s

Fig. 9. - Closed-loop sampled-data system with sampled-hold

devices in the forward path and the feedback path,

The determination of a transfer function for the system is as follows:

From (III-21) the barred output is



C(s) = E(s)

48

(III-55)

The error signal in Figure 9 is

E(s) = U(s) - H(s) C(s) (III-56)

m

Substituting (III-55) into (III-56) and solving for E(s) after

barring gives

m

u(s)
E(s) = (III-57)

1 +

Substituting (III-57) into (III-55) and expressing the result as an

x-transform give

GR(X ) U(x) (TTI-S8)
C(x) = "" -

I + HR(X) GR(X)

where

(III-59)
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For example, consider the system of Figure 9 with G(s) = I / (s + 1),

H(s) = 1 / s, and U(s) = I / s. The sampling period is assumed to be

one second. It is desired to determine the output response, C(x).

The solution is as follows:

s(s + I

-T
x - e

= (III-60)
-T

I - e x

For T : I second,

0.632 x

GR(X) = (III-61)

I - 0.368 x

Similarly,

= = LsZJ - i - x (iii-62)

The x-transform of the input is

0U(x) = = x (III-63)
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Substituting (III-6l), (111-62) and (111-63) into (III-58) gives

0.632 x - 0.632 x2
c(x) =

2
I - 1.368 x + x

(III-64)

Taking the inverse gives

C(x) = 0.632 x + 0.232 x2 - 0.314 x3 - 0.662 x4

5
- 0.591 x - ... (III-65)

c(t) from (111-65) is plotted in Fiaure lO.

v

u

1.0

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-I .0

0
b

0

0.864

0.232 1
0.632 -0.314

0.632

0.550

-0.662 ]

I
i ' I I

21. 3T 4IT -0.114

Time in Seconds

-0.591

I

61"

-0.703

Fig. lO. - System output for the closed-loop system of Fig. 9.
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The same system analyzed with the z-transform has an output

response of

-I 864-2 548-3 -4C(z) = 0.632 z + O. + O. - 0.114 z - ... (III-66)

The values for (III-66) are also indicated in Figure 10. The

x-transform analysis and the z-transform analysis give compatible

results.

Signal Flow Graphs

Signal flow techniques have been applied to sampled-data systems

and these techniques have been described in the literature II. The

extension of the sampled-data signal flow techniques to sampled-data-

hold systems is logical and can be accomplished under the existing

rules with the addition of the following rule:

In taking the barred transform of an equation,

all transfer-functions , such as G(s) in the forward

path of H(s) in the feedback path, are divided by s
and then barred.

Itna=_._,+_;.,,,_....,_,_,I^.k^.,,_^_-transform is- obtained directly from the oarrea.....

function.

It should be remembered that in the barred notation or the x-domain,

the sampler and zero-order hold are treated as an entity. The steps

involved in obtaining the signal flow graph are:

(1) With the system block diagram as the starting point, the

"original signal flow graph" of the system is constructed.

(2) From the "original signal flow graph" the equations describ-

ing the "sampled signal flow graph" are obtained.
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(3) The "sampled signal flow graph" is constructed from the

describing equations in (2).

As an example, consider the system shown in Figure ll. The

.... 7Q
T L.__J

Fig. ll. - Closed-loop sampled-data system.

,,original signal flow graph" is constructed in the usual manner as

shown in the lower section of Figure 12. From this "original signal

,C)
I

U C

=_ G I

U Y- :" " :

Fig. 12. - Composite signal flow graph of the sampled-data

system shown in Fig. 11.

flow graph," the following equations are obtained=

YI - U " YI G (III-67)

u

Y2 = Y1 G (III-68_
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where the "function of s" notation in each term has been omitted for

simplicity. Taking the barred transform of (III-67) and (III-68)

yields

Y] = U - YI (III-69)ITJ

Y2 -" YI (III-70)

The "sampled-data signal flow graph" is drawn from (III-69) and

(III-70) and appears as the upper graph in Figure 12. In this example

the common node on the two graphs is Y1 and the graphs are connected

at this common node. The composite signal flow graph of the sampled-

data system of Figure 11 is now complete.

From the composite signal flow graph the barred output is obtained

by the use of Mason's gain formula as

rG-T;TI

-- L_ u(s---F
C(s) = (III-71)

I ]I +

S

or

c(x)
GR(X) U(x)

1 + GR(X)

(III-72)



The continuous output is

5q

c(s) =
G(S) U-_"

1 +

S

(III-73)

As a second example, consider the system of Figure 9- The

composite signal flow graph is shown in Figure 13. From Figure 13

Y-22=_ I

y1=_ Y1=E y -r2-_ C

Fi£. 15- Composite signal flow graph for the system of Fig. 9.

the barred output is obtained as

m

u(s)

C(s) = (III-74)

1 +
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U(x) GR(X)
C(x) = (III-75)

I + GR(X) HR(X)

Equation (III-75) checks (III-58) which was derived directly from the

block diagram, The continuous output is

u

U(s) G(s)

C(s) : (III-76)

1 -I-

G(s)
S

IF(s) ]
S



IV. STABILITY OF SAMPtED-HOLD-DATA SYSTEMS

In the terminology of a linear continuous-data system the

definition of stability is given as:

A system is stable if the output response
to any bounded input disturbance is finite. 12

It would seem that this same definition could apply to sampled-data-

hold systems since their outputs are piece-wise continuous. However,

the analysis of such systems is being accomplished through the x-trans-

form which, although it gives a continuous output, is a "jump'analysis.

The output c(t) is equal to c(t) only at the sampling instants, c(nT).

Therefore_ any stability tests on sampled-data-hold systems will be

conducted with respect to the sampled output rather than the actual

output.

There must be an element of caution exercised in the application

of x-transform stability analysis. If the system response contains

hidden oscillations 13, then the x-transform method of stability

analysis will lead to erroneous results.

Since all of the systems under analysis in this dissertation

contain a hold device, it is expected that the stability problem will

be more acute than in systems without such hold devices, The hold

circuit is equivalent to adding phase lag in the system and phase la 9

is likely to have an adverse effect on the stability of feedback

control systems.

56
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Consider the continuous and sampled-data systems shown in

Figure ]4. For the continuous system to be stab!e, all of the poles

E(s) __ C(s)e(t) c(t)

(a)

CE(s) C(s) C:(s .h_l_
eCt) T o,i-, c(t) T L___J

(b)

Fig. 14. - Continuous- and sampled-data systems.

of G(s) must lie in the left half of the s-plane; if any pole of G(s)

lies in the right half of the s-plane, the system is unstable. This

can readily be seen by taking the inverse Laplace transform of G(s);

a pole in the right half of the s-plane means that it has a positive

real part which indicates an ever-increasing exponential in the time

domain. Suppose that the sampled-data system of Figure lhb has no

hidden oscillations and that the x-transform method of analysis is

applicable. It can be said that such a system is stable if the output

response c(t) is bounded for a bounded inout This statement .... *

be investigated concerning the placement of poles in the x-plane.

If in the definition of the x-transform, s is replaced by

0"+ j co , the transformation of the stability boundary in the s-plane

onto the x-plane may be observed. Hence,

-(o- + j_ ) T
e

x = .,, (zv-1).

0" +j_
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Letting Or- = 0 and _ take on values from zero to infinity, it is

found that the j_ axis in the s-plane transforms onto a spiral in

the x-plane as shown in Figure 15. Furthermore, the shape of this

spiral depends on the samplin 9 period T.

jO}

s-plane

¢-

Im

x,-pl.ane

(a) (b)

Fig. 15. - Transformin 9 the j6a axis of the s-plane onto the

x-plane.

This means that the actual use of the x-plane for stability

studies is undesirable. However, for closed-loop systems, the

stability depends on the location of the roots of the characteristic

equation

1 + (GH)R (s) : 0 (IV-2)

It must be remembered that R(s) is not G(s) but

-Ts]

I - e

R(S) = Q(s) G(s) = G(s) (IV-3)

s
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Cx_

R*(s) - _, OR (nt) [e -nTs - e-(n+l)ts] (IV-4)

n=_]

where

8 G(s)

GR(S) = ------- (IV-5)

By definition

(GH) R - (IV-6)

$

Thus, in light of (IV-2) and (IV-4), coupled with the indication

in (III-18), a transfer function in the x-domain is a function only

of the pseudo x-transform, x , which is defined as
P

-Is
x = e (IV-7)
P

and the stability analysis can be performed in the x -plane.
P

the x notation, (IV-2) can be written as
P

Using

I + (GH) (x) = 0 (IV-8)
R p
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The stability boundary in the x -plane must be determined. It
P

is known that the j_ axis in the s-plane maps onto a unit circle

centered at the origin in the z-plane. From (IV-7) it is observed that

I

x = -- (IV-9)
P

Z

The transformation (IV-9) sets up a one to one correspondence

between points in the z-plane and points in the Xp-plane, except for

the points z = 0 and Xp= O, which have no images.

In polar coordinates (IV-9)becomes

I

Pe j(_ : ---- e "jG (IV-IO)

r

Equation (IV-IO) can be described by the consecutive transformations

I

l ej_ ' conjugate (IV-I I)Z - _ X = Z

r P

The first transformation in (IV-If) is an inversion with respect to

the unit circle r = I (See Figure 16). The point zI lies on a

Xp / _ 1

x° z

Fia. 16. - Transforming the z-plane onto the x -plane.
" p
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radius drawn through the point z, and its distance from the center is

such that

I z_l z I = I (IV-12)

The second transformation in (IV-If) reflects zI across the real

axis,

This says that points outside the unit circle are mapped into

points inside the unit circle and conversely. Points on the unit circle

are simply reflected across the real axis.

Fromthe preceding it is seen that the stability boundary in the

Xp-plane is the unit circle centered at the origin. Therefore the

stability analysis can be accomplished completely in the x -plane
P

provided that the results are interpreted as follows (see Figure 17):

Fig. 17. - Pseudo x-plane showin_o stable and unstable regions.

(I) Points outside the unit circle are in the stable region.

(2) Points inside the unit circle are in the unstable region.

(3) Points on the unit circle indicate sustained oscillations.
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Stability of Sampled-Data Systems

Through the X_-Transform Analysis

It has been shown that x maps the left half of the s-plane onto
P

the exterior of the unit circle..Ixpl= i and it maps the right half

of the s-plane onto the interior of the unit circle )xpl = 1. The

important definitions in this mapping are repeated as

A A -sT
x = pseudo x = e (IV-13)
P

sT
Z - e

I

Xp - (Iv-15)
Z

Then for s = o'+ j _ ,

x = e-°_T e"j6aT (IV-16)
P

If _r" = 0, the j_ axis of the s-plane maps onto the Xp-plane as a

unit circle in the manner shown in Figure 18.

It should be observed from Figure 18 that traversing up the j_

axis (c_ increasing) is equivalent to going clockwise around the unit

circle in the x plane.
P

It can be stated now that the necessary and sufficient condition

for a sampled-data feedback system (where it is understood that a11
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Im

Xp-P1ane

l_--(2n+l) =

1 _ Re

_- _,z.,, 2/'_

(a) (b)

Fig. IB. - Mapping the jco axis of the s-plane onto the x -plane.
P

samplers are followed by zero-order holds) to be stable is that a11

the poles of the over-all transfer function, C(x) / U(x), which is a

function of only x , lie outside the unit circle in the Xp-plane.P

As an alternate statement: The necessary and sufficient condition

for a sampled-data feedback system (same configuration as above) to be

stable is that all the roots of its characteristic equation in x must
P

have an absolute value greater than one.

The stability tests that will be investigated under the

x -transform method are:
P

(I)

(2)

(3)

(4)

(5)

The Routh-Hurwitz Criterion

The Nyquist Criterion

The Bode plot

The Gain-Phase plot

The Root-Locus plot
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The Routh-Hurwitz Criterion

In attempting to apply the conventional Routh-Hurwitz criterion

to sampled-data systems, it is seen that difficulties arise immediately.

If the barred notation is used; t_e complex variable s appears and the

equations are transcendental in s. Routh-Hurwitz applies only to

14
algebraic equations .

The following definition from Sokolnikoff and Redheffer 15 might

aid in understandin 9 the problem.

A polynomial equation yn + al yn-I + ... + an = 0

is called an aloebraic equation. An equation F(y) = 0

which is not reducible to an algebraic equation is called

transcendental. Thus, tan y-y = 0 is a transcendental

equation, and so is eY + 2 cos y = O.

Difficulty also exists in the Xp-plane because the boundary of

stability is the unit circle J xpJ = 1 and not the imaginary axis.

However, this problem can be circumvented by mapping the interior

of the unit circle in the Xp-plane onto the right-ha|f plane of some

other complex variable plane by a bilinear transformation such asz

i - _ _ - I
x - or x = -- (IV-17)
P P

1 + _ _ + 1

Either transformation maps the interior of the unit circle in the

Xp-plane onto the right half of the _ -plane or _-plane, as the case

may be. For a oiven value of x ,
P

I

O( -- (IV-18)
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Once the transformation has been accomplished, the Routh-Hurwitz

criterion may be applied directly to the new equation in the variab|e

or/@.

As an example of the application of the Routh-Hurwltz criterion

to a sampled-data system, consider the system shown in Figure 19.

s) K , I
=s-'_T_ zoh

t T=I sec. L__._.J I T L._ __J

Fi 9. 19. - A sampled-data system with unity feedback.

It is desired to determine the ]imits on K for stability. The

characteristic equation is

I + GR(X ) = 0 (IV-19)P

°""P'= L -, J

2

0.264 X + 0.368 X ]

: K P P (IV-23)

0.368 x2 - 1.368 x + I
P P

Substituting (IV-20) into (IV-19) and simplifying yield
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(0.368 + 0.264 K) x 2 + (0.368 K - 1.368) × + I = 0
P P

(IV-21)

Substituting the /3 transformation of (IV-17) into (IV-2l) and

simplifying give

0.632 K_ 2 + (1.264 - 0.528 K)_+ (2.736 - 0.104 K) = 0 (IV-22)

The Routh's array, which is determined from (IV-22), is

/_2 0.632 K (2.736 - 0.194 K)

(1.264 - 0.528 K)

30 (2.736 - 0.I04 K)

The Routh-Hurwitz criterion states that a system is stable if the

elements in the first column of the Routhls array are a11 positive

(or all negative). Therefore, for the system of Figure 19 to be stable,

the following conditions on K are required:

K >0

K _ 2.4 (IV-23)

It may be said that the application of the Routh-Hurwitz criterion

in stability studies of sampled-data systems is straightforward. The
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feasibility of the method, which depends on the use of a bilinear trans-

formation, is determined by the order of the system under study.

Higher order systems may require more labor than the result warrants.

It is well to remember that the Routh-Hurwitz criterion tells nothing

about the degree of stability.

The Nyquist Criterion

The Nyquist path

The Nyquist path in the s-plane for continuous-data systems is

shown in Figure 20a. The Nyquist path in the Xp-plane is shown in

Figure 20b.

II I.

j (a

S-Plane

IV 0- I

Im

1 Xp-Plane

_Re

(a) (b)

Fig. 20. The Nyquist path in the (a) s-plane (b) Xp-plane.

The Xp-transform method

The Nyquist plot of GR(Xp) is a plot of GR(Xp) as Xp takes on

values along the Nyquist path in the xp-plane, which is the unit circle

with center at the origin.
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The net number of rotations, N, of 1 + GR(X p) about the origin

of the I + GR(Xp)-plane is equal to its total number of poles, P,

minus its total number of zeros, Z, inside the unit circle in the

Xp-p Iane. Thus,

N = P - Z

where counterclockwise rotation is defined as being positive and

clockwise rotation as being negative.

As is normally done in a Nyquist analysis, the critical point

is made at (-I, 0) instead of the origin. This is accomplished by

shifting the imaginary axis one unit to the right and observing

GR(X ) rather than I + GR(Xp).P

For a stable closed-loop sampled-data system, the Nyquist

criterion states that the Nyquist plot for GR(X p) will encircle the

(-I, 0) point of the GR(X )-plane in a counterclockwise directionP

such that the net number of encirclements will be equal to the number

of poles P that lie inside the Nyquist path in the x -plane. Thus,
P

N = P

If the system is open-loop stable (P = 0), then the criterion

simplifies to

N = 0

and GR(Xp) should not encircle the (-I, 0) point at all.
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It is concluded from the preceding statements that the application

of the Nyquist criterion to a samp]ed-data system is an investigation

of the behavior of the Nyquist plot of GR(X p) with respect to the

(-1, O) point. If the plot can be constructed, then the application

can be made.

As an example, consider the sampled-hold-data system with a loop

transfer function of

K

G(s) = (IV-24)

s(s + 1)

For T = 1 second

[ K1s2 (s+ I)

(IV-25)

or

I 0.264 X_ - 0.368 X ]

GR(X) -- K (IV-26)

(I - x)(l 0.368 x)

Since GR(X) is actually a function of x
P

GR(Xp) 0.264 x_ + 0.368 Xp

only, one obtains

(IV-27)

K (1 - Xp)(1 - 0.368 Xp)
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From Figure 20b the relations between points on the unit circle in the

x -plane and points on the j_a axis in the s-plane are obtained as
P

_S

Xp = 1 / -90 ° f_J= n_)s +
4

2_

/ sx = I -180 ° b_= n(_ +

p s 4

3_

.270 ° sX = | G._= n(J3 +
p s

4

4b_

= 1 / -360 ° _ = n c_s + s
Xp 4

(IV-28)

Evaluating (IV-27) by (IV-28) gives

K'I GR(-j) = 0.3 /-191 °

-I
K G (-I) = -0.038

R

K"I GR(j) = 0.3 / -i69 °

(IV-29)

-I

K GR(I)_ _ : o_

The points (IV-29) a]ong with some supplementary points are plotted

in Figure 21.

In order to complete the Nyquist plot of GR(Xp) _ the section

of the Nyquist path in the Xp-plane corresponding to Section II
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(points 1, 2, 3 in Figure 20b) should be considered. Figure 22 gives

\
0

@ =90

Xp-Plane

G--_,o @

¢=180° @ ¢ =0"

Xp=l

@

@=-270°

Fig, 22. - Section II of the Nyquist path in the Xp-plane.

an enlarged view of the indention in the Nyquist path. The points in

this section may be represented by

x = ! + _..e j¢ ,T....
p _ 'v-3 ';

where _ tends to zero and 95 ° _ ¢ E 270 °. Substituting (IV-39)

into (IV-27) gives

-I
K

GR(X p)

0.264 (I + 2¢e j_ + _2 j2_)e

+ 0.368 + 0.368 E ej@ ]

-E e j_ (0.632- E e j¢_ )

(zv-31)
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Since ¢,---PO, then (IV-31) may be written as

I

K-1 G (x) = -_ e"]H" (IV-32)
R p

Therefore, the magnitude of K-I GR(Xp) on Section II of the Nyquist

path approaches infinity and as _ varies from 90° through +180 ° to

270 ° in a counterclockwise direction, K-1GR(X p) varies according to

(IV-32) through a rotation of 180° in a clockwise direction about the

origin of the GR(Xp)-plane, This section of the Nyquist plot is also

shown in Figure 21.

It should be noted from F!gure 21 that the critical value ofK is

K
C

!
m

O.41
= 2.hJ_ (Iv-33)

This value checks with the value obtained through the Routh-Hurwitz

analysis of this same system. The gain-and phase-margins for this

system as determined from Figure 21 are 7.Sdb and 31° respectively.

The bilinear transformation method

The same plot obtained in Figure 21 may be obtained under the

bilinear transformations

x - or x - (IV-34)

P /3 + 1 P 1 +

Substituting (IV-34) into (IV-27) and simplifying give
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KIG- [ x _- _- '] = 0._(/3- 1.0)( n ÷ 0.16_)
L !

R p B + lJ (B + 2.16)
(IV-35)

Let _ = j(_# , where (_ is the imaginary part of /3. Then,

-I
K

-0.0382 (I - j_ )(I + j 6.06_ )

GR( j (a_) - . (IV-36)

1 +j 0.463 ¢_,8

Plotting (IV-36) gives the results shown in Figure 23, which is the

same plot as shown in Figure 21.

Relationship between frequencies

Using the bilinear transformation

x - I

P
/9+1

(zv-37)

one finds that

/_ = 1 + Xp

1 - X

P

(Iv-38)

However, for real frequencies
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-j_ T
x = e (IV-)9)
P

and

/_ = J_#3 (IV-40)

Substituting (IV-39) and (IV-40) into (IV-38) gives

1 + e "j#T

j_ : (IV-41)

1 - e "jt_T

Sim_11fyimg (IV-41)g(ves

_j : - cot (zv,_:,)

In a similar manner it may be shown that

_w = tan -- (IV-4))

2

Equations (IV-42)and (IV-43) give the relationships between 6J,

_ , and 60_ . Implicitly inc|uded is G}s = 2T_/T.
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The Bode Diagram

The Bode diagram is constructed in the same manner as in continuous

data systems once the bilinear transformation has been made.

As an examp]e, consider the system described by (IV-24) which has

an open-loop transfer function of

K

G(s) : , (IV-44)

s(s+ 1)

Under the bilinear transformation Xp = ( /_- I) / (/_+ 1), the

equation from which the Bode plot is constructed is

.1 -0.O382 (I - j co_ )(I + j6.06 _o,a )
K GR(J &)_) = (IV-45)

1 , j 0.463 _fj

where T has been assumed one and _ = j O3_ . From (IV-45) the corner

frequencies are at b,)p = 2.16, l.O, and 0.|65. The dc gain is

-28.36db. The Bode plot is shown in Figure 24. The marked indications

of gain margin and phase margin are equal to those obtained from the

Nyquist diagram of the same system (See page 73).

The Gain-Phase Plot

The gain-phase diagram may be constructed directly from the loop-

gain expression or from the Bode plot. It is a diagram for the open-

loop transfer function, GR(Xp) , magnitude as a function of phase
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44

4o

36

._32

28

o

An_le of G

FIG. 25. - Gain-phase plot for G(s) = K .
s(s + i)
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The Root Locus Method

The root locus technique has become one of the most popular methods

available for analysis and design of linear control systems, It has

been shown previously that the location of the poles and zeros of the

closed-loop transfer function C(xp) / U(Xp) completely determine the

stability and transient response of each sampled-data system. Further-

mores the closed-loop Xp-transfer function is a rational function of

x and the characteristic equation of the system shown in Figure 19 is
P

an algebraic equation in x . This characteristic equation is
P

I + GR(Xp) = 0 (ZV-46)

The construction of the Xp-plane root locus is straightforward

since the same rules which apply for the conventional root locus '

diagrams are also applicable to the Xp-plane loci. The rules of

construction are based on the following conditions=

r i

(i) IIIGR(Xp)I = l (IV-47)

(2) /GR(X P) = 180° + k(]60 °) (IV-48)

where k = 0, + 1, + 2s ... a11 integers.
m

The rules and their proofs may be found in most standard textbooks on

feedback control systems. 16
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As an examplej consider the same system used in the previous

stability study methods. This system is redrawn in Figure 27. Since

T=i sec. I I _ s(s+l)
_--¢'_ zoh

I I
L_._.I

Ftg. 27. - Closed-loop sampled-data system.

the system has unity feedback_ H(s) = 1, the characteristic equation is

I + Ge(x ) = 0 (ZV-49)P

The open-loop Xp-transfer function is

GR(X p) = K I

0._2t +0.!L I
J

(I - Xp)(l - 0.368 Xp)

(IV-5O)

for a sampling period T of one second. The root loci of the system

are plots of the roots of (IV-49) when K is varied from zero to

infinity (K may also be negative). Equation (IV-50) has poles at

Xp = i and Xp = 2.72 and zeros at Xp = 0 and Xp =-1.39, From the

rules for root locus construction, the root loci plots may be drawn

as shown in Figure 28.
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K=2.42

V--
X -Plane

/

K-O

_.i
,'572 2_o72 Re

\

Fig. 28. - Root locus plot of the sampled-data system
shown in Fig. 21.

The loci start from the poles Xp = 1 and Xp = 2.72 and terminate

on the zeros xp = -1.39 and x = 0. The breakaway points are locatedP

by the following procedurez

(1) Write the characteristic equation as

K = f(xp) (ZV-51a)

(2) The breakaway points are the .roots of

dK

dx
P

= o (IV-Slb)

Therefore, the breakaway points for this example are at Xp = 1.512

and Xp : -0.472. The marginal gain, Kc, may be determined graphically



84

or from (IV-49). Rearranging (IV-49) gives

J I- Xp I J2"72 - xpl
K' = (IV-52)

IXpl IXp + 1-39J

where

K' = 0.717 K (IV-53)

The critical value of gain is that value of K at the point where the

locus enters the unit circle. From Figure 28 the magnitudes of (IV-52)

may bedetermined giving

• (2.7)(1.2)

K' = = 1.73 (IV-54)

(I)(1.87)

Therefore, the critical value of gain is

K' 1.73

Kc - - = 2.42 (IV-55)

o.717 0.717

It is obvious from Figure 28 that the lower limit on K for a stable

system is K = O. Therefore, for a stable system

O _ K _ 2.42 (IV-56)
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The gain at any other point on the locus may be determined in a similar

manner.

An interesting point is seen from Figure 28. For a two pole,

two zero configuration the complex con,jugate section of the root loci

is a circle. This may be proved as follows:

Let x = x + jy (IV-57)
P

Then (IV-51) becomes

K [0.264 (x + jy)2 + :}.368 (x + jy)]

GR(X ) = (IV-58)
P

(i - x - jy)(1 - 0.368 x - j 0.368 y)

Condition (2), equation (IV-49), specified earlier for root loci

construction, states that

/GR(Xp) = 180 ° + k(360 °) = (2k + l)/T (IV-59)

Equation (IV-58) may be written partially in view of (IV-59) as

m m+n

/0R<X.>Zlx0z F Ixo <,v,0>
i=l ,j=l

• indicates zeros and pj indicates poles of GR(Xp). Therefore,where zI

GR(Xp -I I 0.528 x y + 0.368 y ]

= tan

2
0.264 x2 - 0.264 y + 0.368 x

-I
- tan

0.736 x y -_j.3__68_y ] (IV-61)
I - 1.368 x + ).368 x2 - ").368 y
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Taking the tangent of both sides and using the identity

tan (a + b) :

tan a - tan b

I + tan a tan b

(IV-62)

give

i o.528 x y + o.368 y
0.264 x2 - 0.264 y2 + o.368 x

0.736 x y - 1.368 y ]

J1 - 1.368 x + 0.368 x2 - 0.368 y2

: (Iv-63)

] +

0.528 x y + 0.368 _ ]

t. 0,254 x 2 - 0,26g y2 + 0,368 x.]

I 0.736 x y - 1.368 y 2]

m m m _ m

1 - I. 368 x + 0.368 x2 - 0.368 y

Now

tan /G R(XP) = tan (2 k + I)_T" = )
(IV-64)
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Simplifying (IV-63) by (IV-64) gives

543)2 2(x - O. + 1,0 y = 1.298 (IV-65)

This is the equation of a circle with center at (_.543, O) in the

Xp-plane and a radius r = 1.14.

From the preceding example it is seen that the root locus plot

in the Xp-plane for a sampled-data-hold system may be made just as

in the continuous case. Because of a different region of stability,

a different interpretation must be placed on the resultant diagram.

The stableregion is the area outside the unit circle.



V. RESPONSE OF SAMPLED-DATA SYSTEMS

BETWEEN SAMPLING INSTANTS

The x-transform analysis has been developed around a combination

circuit including an ideal sarnpler and a zero-order hold. The output

of such a combination approximates the unsampled output of the system

c]osely if the sampling rate is sufficient]y high. The output of a

sampled-data-hold system is equal to the unsampled system output only

at the sampling instants_ it is an approximation between sampling

instants. In order to get a comp|ete description of the system, it

is necessary to know something about its behavior not only at the

sampling instants but also between sampling instants. The two methods

that wi|l be investigated for determining the system behavior between

sampling instants are the submultiple sampling method and the modified

x-transform method.

Submultiple Sampling

Open-loop

One approach to the evaluation of system outputs between sampling

instants may involve the use of a fictitious sampler-hold at the output

17
of the system whose period is a fraction of that at the input. The

general theory considers the case where the output samp|er is operated

at a period T/n, n being an integer, and the input sampler is operated

at a period T.

88
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In order to gain a basic understanding of the principles of

submultiple sampling, the specific case of a double-rate output sampler

will be considered. The system shown in Figure 29 is to be investigated.

Since E(s) is constant between sampling instants, the presence

of the fictitious sampler in the input does not affect the original

system. At alternate sampling instants the input samplers operate

simultaneously. Between these sampling instants the fictitious

sampler merely samples E(s) and holds it until the two samplers again

operate simultaneously (see Figure 3,3).

d,

C,

F
b

-o
c-

I;:°"

I
i

I

t

i I

I !
I I

! | t L L

0 T//2 3T//2 2T 5T/2 3T 7T/2 4T

Time in Seconds

, 1

!

I

i
!

I
!

I

I
I
!
I
I
!

Fig. 30. - Results of a sampler with period T followed

by a sampler with period T/2.

While the use of the double frequency sampler on the input does

not alter the input to @(s), it does suggest that a change of variable

might be useful. This new variable is defined as

-(T/2)s
e

×2 -
S

(v-l)



From (V-l) it is seen that
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x = x 2 X2p (V-2)

However, once again, it is not necessary to differentiate between x

and Xp, and (V-2) may be expressed as

2

x = x2 (v-3)

Therefore, in view of (V-3), it is seen that the input to G(s) is

_[ E'_s)] - E(x22) (V-4)

The input can now be expressed in terms of the double-rate variable

2

x2 by merely replacing all the x's by x2.

The double-rate output x-transform is related to the input

double-rate transform by

C(x2) = GR(X 2) E(x_) (V-5)

where

 E0!,,I= (v-6)
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Equation (V-5) may be developed from the block diagram of Figure 29b

as fol lows:

C2(s) = Q2(s) c (s) (v-7)

R2(s ) =_ O.2(s) G(s) (V-8)

and

C2(s ) = G(s) Q.2(s) E;(s) (V-9)

Starring (V-9) after substituting (V-8) gives

C2(s ) = R2(s) E"(s)2 (V-lO)

where the subscript indicates that the sampling period is T/2.

Substituting (V-IO) into (V-7) yields

C2(s-----_= Q2(s) E2(s) R2(s)

= E2(s) R;(s) (V-11)

However, the input sampler operating at a period T/2 does not affect

the input to G(s) and (V-II) may be written as
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C2(s) = E(s) R2(s) (V-12)

Under the definitions given in Chapter III for the open-}oop transfer

function and equation (V-4), one may write (V-12) in the x-transform

notation as

C(x 2) = E(x_) GR(X 2) (V-13)

As an example of the application of the submultip]e samp]ing

method for determining the output between sampting instants, consider

the system of Figure 29b with G(s) = I/(s + 1) and E(s) = l/s.

Determine the output at t = O, 0.5_ 1.0_ 1.5, 2 ... seconds when

T = I second. The solution is as follows:

Gs) I x-e xGR(X) = -- = - (V-14)
-T

s(s + 1) 1 - e x

and

x2 - e-T/2 x2

GR(X 2) = (V-15)

The input is



oE(x) = = x

94

(V-16)

From (V-2)

0 0 0
X -- X X

2 2p
(v-17)

0

But X2p = I. Then

0
E(x22) = x2 (v-18)

Substituting (V-15) and (V-18) into (V-13) gives

x xO[ox1
I - 0.606 x2

(v-19)

Taking the _nverse x-transform gives

x2+ 0.239 + 0.145 x3
C(x 2) = 0.394 x2 2 2

+ 0.088 x24 + 0.0534x_ + ... (V-20)

c2(t) is obtained from (V-20) and plotted in Figure 31.
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I .00

0.75

_ 0.50

0.25

0.394

0.919
0.866 1o.o53

0.778 I0.o88

0.633_.145

.239

o.394
0

0 T/2

i s I I t

T 3T/2 2T 5T/2 3T

Time in Seconds

2
Fig. 31. - Submultiple sampling with T---_T/2 and x----_x .

2

It is apparent from the double-rate case previously considered

that an n-rate case may be given. In general, the submultiple rate

sampling method for the open-loop system is determined by

C(x n) = E(x n) GR(X ) (V-21)
n n

where

GR(X n) = GR(X)

X ----4-X
n

T_ T/n

(V-22)

and
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E(x n) : E(x) J n

n I x---_Xn

(V-23)

The number of additional sampled values, q, desired between

any two consecutive sampling instants is determined by n = q + I.

Closed-loop

The application of the submuItiple sampling method for evaluating

the response between sampling instants of a closed-loop system is

similar to that for an open-loop system. Figure 32 shows a closed-

loop system with fictitious sample-hold circuits included. The sampler

on the input operating with a period of T/n seconds does not alter the

input to G(s) (see the open-loop analysis on page 90).

_/__ r-- -_,C2(s)F.......
--- ctx2/

I

r....:L ..... _i Q.(s) I-7. -,+I
i T L___J bl, x;
L-

u(._q_W_*.OE(s)_'E'*(s)i _ _ _'E_'(s) I lEn(s).J--_
T I I _'_'1 T/n I I _ n j I I

Fictitious Sampler-Hold

:n(S)

Fig. 32. - Closed-loop sampled-data system showing fictitious

samplers which aid in determining the response between sampling

instants.

The fictitious sampler at the output gives
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C(x n) = E(x_) GR(X n) (V-24)

(Xn) nwhere E n is the ordinary x-transform with x replaced by xn and

GR(X n) is the ordinary x-transform for a transfer-function with x

replaced by x and T replaced by T/n.
n

The output of the fictitious sampler-hold on the input is

n

E(x n) = U(x_). E(x_)(GH)R(X_) (V-25)

n

Solving for E(Xn) ,

E(x n)
n

U(x_)

n

1 + (GH) R (Xn)

(V-26)

Substituting (V-26) into (V-24) gives

C(x ) = G(x )
n K n

n

u(x n)

I + (GH) R (x_)

(V-27)

where

(GH) R (x_) : (GH) R (x) (v-28)

and
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_ IH(s) G(s)](GH) R (x) : (V-29)
S

Consider the system of Figure 32 with G(s) = I/s(s + 1),

H(s) = I and T = I second. It is desired to find the output response

at two additional instants (equally spaced) during each samp]ing

period if the input is a unit step function. The solution is as

follows:

GR(x) = = I

s2 (s+I)

-T x2 -T -Tx (T - e - l) + (I - e T - e )

e-T -T 2I - (l + ) x+e x

(v-30)

Determining GR(X 3) from (V-30) gives

GR(X 3)

-0.333x3 (0.333 + e - I)

2 -3.333 -0.3331

+ x 3 (I - 0.333 e - e )J
-0.333 -0.333 2

1 - (1 +e ) x +e x
3 3

or



Gr(x 3) =

99

2

0.0_
2

÷ 0.717 x3
I - 1.717 x3

L

The input is a unit step_

0

U(x) = x

and

therefore

Using (q-30)

0.26/4 x_ + 0.368 x_

(GH)R (x) = ) = 6 + l
0.368 x3 . 1.36'q-x

1 substi tuting

(V-31), (V-32) and (V-33) into (q-27) gives

O.05 x3 + _'_ x3 x3
1 - 1.717 x3 + _.717 x 3

+

6 . 1.368 x3 + I
,Lo.368 x 3



Simplifying (V-34) yields

1_n

C(x3 ) 3 + q.209 x_= 0.050 x3 + O.13_ x_ + ].187 x 3

+ 0.207 x53 + 0.208 x63 + ... (V-35)

3 6 9

The coefficients of x3, x3, x3, ... which correspond to the output

at t = T, 2T, 3T, ... may be checked with the results for the output

of this same system in Chapter III, page 45.

The DelaTed X-Transform

The result of a delay factor in the x-transform theory was

shown in Chapter II, page 24. This delay factor or shift is

_x.[e(t - nT) u(t nT)] = xn E(x) (v-36)

where n is an integer. Suppose that the delay is kT where k is not

an integer and suppose that the samplin 9 instant remains unchanged;

that is, the sampling and hold occur at t = O, T, 2T, ... , but the

delay is not necessarily an integral number of sampling periods.

Figure 33 illustrates this condition. The sampled-hold delay sequence

may be represented by

e(t - kT)

oo

n=O

e(nT - kT) [u(t - nT) -u It- (n+ I) T]] (V-37)
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---_-- _ ' _e(t-kT) u(t-kT)

e(t)

[,,
0 kT T 2T 3T 4 r_

Time in Seconds

Fig. 33. - Delay function and pulse sequence of delay function.

where k is a noninteger and n = O, I, 2, 3, .... It is assumed that

k can be represented as the sum of two quantities. Let

k = p + q (V-38)

where p is the largest integer less than k and q is a positive number

less than one. Equation (V-37) becomes

e (t - kT) =

oo

n=O

e(nT - pT - qT) [u(t nT)- u It- (n + I)T]]
(V-39)

Taking the x-transform of both sides of (V-39) gives
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c_o

(t - kT) = xp e(nT - qT)(x - x ) (V-40)

n=O

Since there is no additional information gained by delaying an integral

number of sampling periods, p is set equal to zero, Equation (V-40)

then becomes

_[e(t- qT u(t- qT)]

oo

=T,
n:C)

e(nT - qT)(x n - xn+l) (v-41)

Equation (V-41) will be referred to as the defining equation for the

delayed x-transform of e(t) and denoted by

E(x, q) _ :___[ eCt- qT)u(t- qT)] (V-42)

If q = O, then there is no shift and the summation over n in (V-41)

is from zero to infinity; however, if q is other than zero, then the

summation is from one to infinity.

As an example, it is desired to determine the delayed x-transform

-at
for a time function e that is delayed by 0.5 T seconds. Using

(V-41)

E(x, q : 0.5) _leCt - 0.ST) uCt- _.ST) 1

c_o

Z e-a(nT - _.ST) (x n _ xn+l)

n=O

(V-43)
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It should be noted that the function is zero until t = 0.ST; there-

fore, the summation should be from n = 1 to infinity. Thus,

oo

n+l
-a(nT- 0.ST) (xn xE(x, 0.5) : e - )

n=l

t'x0 -0.SAT 2 -aT 3- x) e (x +x e +x
-2aT

e + ...)

(x - x2) e -:)'5aT

-aT
l - e x

(V-44)

The inverse of (V-44) is plotted in Figure 34 along with the

continuous function for comparison.

I.OC

0.75

d
!

0.5c

0.25
0

!

k Se(t-O. ST) u(t-]. ST)

i _ O. 6,]6

1, I

"., 0.224

0.606 -_.Q.141|0,083 0.0311

s I I I

2T 3T 4T 5T0 .5T

Time in Seconds

6T

-at
Fig. 34. - Comparison e(t) --e

_[e(t - 0.5T) u(t - 0.ST)] .

delayed by 0.ST and
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The Modified X-Transform

Open-loop

The system shown in Figure 35 is an open-loop system with a

" c-',-(q,s) C(q,s)

E(s).l . J C(s) ,'--T ',C(a s .bl_ $¢ ." . .I _(_L
Q(s) "i G(s) _-_"_.e " s .t.-._,-;-) & _ Q(s) I---"

TI • I-1 L i T L__,'

Fig. 35. - Open-loop system with fictitious time delay e"qTs,

fictitious • time delay inserted at the output. The fictitious time

delay is not a part of the system; it is added merely as a convenience

for allowing the determination of the output response at times other

that the sampling instants. The definition of q is the same as in

the delayed x-transform analysis.

It is assumed that the fictitious delay is grouped with G(s)

and the following definition is made=

A
G'(s) _ G(s) e "qTs ¢,, l,c_

By the same block diagram manipulations as are shown in Chapter III

for the open-loop case_ it can be shown that

C(s, q) = E(s) R'(s, q) (V-46)

or
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C(x, q) = E(x) GR(X , q) (V-47)

where

At this point a change in the delay nomenclature may be made. Let

q = I - m (v-49)

Then

C(x, m) = E(x) GR(X, q) I (V-50)

I q = I - m

Since q is a number between zero and one, m is also between zero and

one. Therefore, using the de'ay theorem

GR(X , m) : GR(X , q)
q = 1 -m

(_

= x gR (n + m) T (x n - x ) (V-51)

n=O
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where the rule for taking the x-transform of a transfer function carries

over to the modified x-transform. The modified x-transform 2 E(x9 m)_

is given by

(x n n+1- x ) (v-52)

It should be noted that the modified x-transform involves a

delay and therefore there will never be an x 0 term in the output

response of C(x_ m). An example will illustrate the modified x-trans-

form.method, It is desired to determine the output response of the

system of Figure 35 at t = 0.5, 1.5, 2.5, ... with G(s) = I/(s + I)

and a unit step input. The solution is as follows=

Using (V-51), the transfer-function transform is

GR(X , m) = m --

Ls ]

s(s + 1)

e (v-53)

which from (V-52) becomes
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(x - x 2) e "roT

GR(X , m) = x- (V-Sb,)
-T

1 - e x

or

x(l - e -mT) + x 2 (e "roT - e "T)

G (x, m) = (V-55)
R

-T
1 -e x

In order to get the output response at t = 0.5, 1.5, 2.5, ... , (V-50)

will be used with m set equal to 0.5. The input is a unit step,

therefore _. [u(t)l = x0 and T is assumed to be one. Then
L J

C(x, 0.5) x0 GR(X, 0.5)

2
0.394 x + 0.238 x

I - n.368 x

,, .---,I. + r1.141 x + ...= _,._ x + O,_R_ 2 3
jvj .. _ . . (v-56)

c(t, 0.5) is obtained from (V-56) and plotted in Figure 36 along with

c(t_ I) and c(t, 0). It should be noted that

and

C(x, 1) : C(x) [if e(O) : 0 ] (V-57)

c(x, 0) = x C(x) (v-58)
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I.00 , 0.950
0.864 ,).918: ,

0 7_=" ..... _:1_"1"_----
, • :/ / 10.232

.°.63-_i'' L I c(x,o.s)
i.... I

I O. 3p4 / II

P.632 C(x,O)

0.25 0.394 I
I

0 , I i ,
0 T 2T 3T 4T

Time in Seconds

Fig. 36. - C(x, m) for step input and G(s) = I/(s + I), T = I.

CT

A modified z-transform analysis for this same system gives

C(z, 0.5) = 0 394 z "1 z "2 3• , + 0.777 + 0.918 z" + ... (V-59)

These values are also indicated in Figure 36.

Evaluation of some modified x-transforms

Determination of the modified x-transform of the time function

u(t). - By definition

E(x, m)

n=O

n=']

e [(n + m)T] (x n - x n+l)

u [(n + m)T ] (x n - x n+|)
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_[_ xo 2u(t = x ( - x + x - x2 + x - ... )

= x (V-60)

Determination of the modified x-transform of the time function

-at
e . Using (V-52) gives

_m[o-":]:x_.
n=0

e-a(n + m)T (xn _ xn+I)

-amT x 0 -aT -2aT 2= x e ( - x)(] + e x + e + x + ... )

-amT x 2

;£//._e = (v-61)
" '"" " -aT

| - e x

Determination of the modified x-transform of the time function

(i/a) It - (1 - e-at)/a] . - Taking the transform of the sum gives

I+I I - e(t )
m

a

I

a

++[')- T u(t
a

[ x,+] +L2- -- mTx +- - __ x +--.

I - x a2 a

e"amT_ __(x-.x2>l
1 - e "aT x J



(t 1 - e-at ) 1
a

ll0

I 2 -amT 1

1 mT (x - x ) + Tx 2 x e (x - x 2)

a 1 - x a a (1 - e "aT x)

(v-62)

Closed-loop

A modified x-transform analysis of a closed-loop system may be

made using the system shown in Figure 37. From this block diagram

I T L___J

L

" I
T Ficti tious

I e(1-m)Ts

Fictitious
Ti me Advance

Fig. 37. - Closed-loop sampled-data system with fictitious

time delay and advance.

_---_(s,m)
.... ,Q(s) , ....

IC(s,m)

the following equations may be written=

C(s, m) = G'(s) E(s) (v-63)

where

-(I - m)Ts
G'(s) : G(s) e (v-64)

The error signal is
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E(s) = U(s) - H'(s) C(s, m) (v-65)

where

H'(s) = H(s) e(I - m)Ts (V-66)

Substituting (V-63) into (V-65) gives

E(s) = U(s) - H'(s) G'(s) E(s) (v-67)

Taking the barred transform of both sides gives

[ H'(s) G'(s)]
E(s) = U(s)- E(s)

S

(V-68)

Solving..for E(s) gives

R

E(s)

l 4-

U(s)

H'(s) G'(s) ]
S

(V-69)

Takino the barred transform of (V-63) and substituting (V-69) into

it yield
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m

u(s)

C(s, m) = (V-70)

I 4-

H'(s) G'(s) ]
S

or

GR(X , m) U(x)

C(x, m) = (V-71)

I + (GH) (x)
R

The effects of time delay and time advance cancel each other in the

loop gain portion of (V-70). By a previous definition

H(s) G(s_(GH)R(X) : _ (V-72)
S

For a system with unity feedback

G (x, m) U(x)
C(x, m) = R (V-73)

I + GR(X )

Modified x-transform theorems

Shiftino theorem.- If _ [e(t)] = E(x, m), then
' m
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= xn E(x, m) (V-74)

The proof of this theorem is _iven in the derivation of the modified

x-transform through the use of the delayed transform.

Corollary I. If _m [e(t I = E(x, m), then

_m [e(t + T)] : x -I E(x, m) -e(mT)(x 0 - x) (V-75)

Proof: By definition

1 I_m e(t + T) = x e (n + l + m) T (x - x )

n=O

e [(n + I + m)T] (xn+l - xn+2)

n:'_ (V-76)

Let k = n + I. Therefore,

c_o

k=1

k+l
{xk - x ) (V-77)

Adding and subtracting the term e(mT)(x 0 - x) under the summation

sign gives
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k=O

- e(mT) (xg-x)

-I
x E(x, m) - e(mT)(x 0 - x) Q.E.D. (v-78)

For i11ustrations see Examples 8 and 9_ Appendix B.

Initial value theorem.- If _ [e(t)]m

lira e(t) = lira e(nT, m) = lira
4-

t ---__) n --)-,3 x--_ _;

m=C) m=0

= E(x, m), then

(v-79)

Proof • By definition

E(x, m) = x _.

n=O

(n + m)T]
. n+l(x n x )

or

-' 7. [ ]X E(x, m) = e (n + m)T

n=O

(x n . x n+l ) (v-8o)

Letting m equal zero in (V-80) gives

-I
x E(x, m)

o13

=Y.
n=)

_ n+le(nT) (x n x ) (v-81)
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The right side of(V-81) is recoonized as the ordinary ×-transform of

e(t). Therefore, by the application of the initial value theorem

for the ordinary x-transform (V-81) becomes

lim -- - -- lim

x(x 0 . 0m=O X'---_ 0 x - x
x---_ 0

= lim e(t) Q.E.D.

t--_O

(v-82)

An example of the use of this theorem is given in Example I0,

Appendix B.

Final value theorem. - If _m [e(t)] = E(x, m), then,

lim e(nT, m) = lira

n.--_, o_) x ----_1
3 __ m __ I O c_rn _- I

E(x,

m>ix
= I

(V-83)

Proof: From the shifting theorem

x-1"Zm[e(<+T,] : E(x, m) - e(mT)(x 0 - x) (V-84)

Then



116

[e(t + T)-e(t)]

-I
= X

P
E(x, m) - e(mT)(x 0 - x)

- E(x, m) (v-85)

Rearranging (V-85) gives

/_m [e(t + T)- e(t)] E(x, m) 0
- - e(mT) x

1 - X X
P P

(v-86)

However, by definition

k

_m [e(t + T) - e(t)] = Iim x I
k--__o p

n=]

[el(n+,

n+l
- e(n + m)T (x n - x ) (v-87)

Expanding and factoring (V-87) give

_(_m [e(t + T)- e(t)] = l im[e [(m + I)T] x(1 - x )p

k-,.o,_

- e(mT) x(] - Xp) + e [(m + 2)T] x2(1 - x )
P

-e [(m + I)T]

-e [(m + k)T]

X3(I - Xp) + ... + e [(m + k + I)T] xk+1(1 - x )
P

k+l ]x (l - x ) (v-88)
P

or
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%m [e(t + T)- e(t)]

(I - Xp)

= lim [e [(m + I)T] x

I<-_o<)

- e(mT) x + e (m + 2)T x - e (m + I + ...

+ e (m + k + I)T x - e (m + k) x k+1 (V-89)

It is observed that, if the limit is taken of each side of (V-89) as

0
x approaches one with x equal to one, (V-89) becomes

lim

x_|

[o(,+
| - X

P
0

x = 1

= e(O_)) - e(mT) (V-90)

However, from (V-86) one obtains

/_m [e(t + T)- e(t)]

I - x
P

0
x = I

= lim E(x, m) I e(mT) (V-91)

x.---_l I Ox =1

Equating the right-hand sides of (v-go) and (V-91) and solving for

e(CX_) give
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e(OO) : ]ira E(x, m)I Q.E.D.

x.--_l I _x = I

(V-92)

An example of the use of the final value theorem for modified

x-transforms is given in Example II, Appendix B.

Complex translation. - If _m[e(t)] = E(x, m), then

_m[e-+_'°<<']= (I -x) e_aT(m-l) E'(xe _aT, m) (v-93)

wher'e

E' (xe _aT m)
E(xe +aT, m)

+aT
] xe-

(v-94)

Proof: By definition

_m [e _at e(t)] -- X

n-O

+a(n+m)T
e--

+amT
e--

_A
r_

n=0

+anT

e [(n + m)T] e-

n+1
(x n - x

n n+1
(x - x )

+arnT
e- x (1-x)

n=O

e{(°+ml_]"

+aT )n(e- x (V-95)
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+aT

Multiplying the right-hand side of (V-94) by e"
VaT,

e gives

[e-+ate(t ]
m

oo

+amT _aT +aTe- e (e- x) (I - x)

/ ,
n=O

e [(n + m)T] (e+aT x) n

(V-96)

+aT(m-l) xe+aT)
(I - x) e- ( -

n=0

e [(n + m)T] (e --+aT x)

+aT(m-l) (xe_aT= (I - x) e- E' , m) (v-97)

where

+aT [ ]E'(xe _aT, m) : xe- e (n + m)T

n=0

(xe_.aT) n

+aT
E(xe- , m)

: Q.E.D. (V-98)

+aT
1 - xe-

For an example see Example 12, Appendix B.



VI. CONCLUSIONS

The x-transform theory is based on a sampler-hold combination.

This combination is quite prevalent in practical sampled-data systems.

The use of the hold device is necessitated because of the higher

frequencies generated by the sampler.

The x-transform theory parallels the z-transform theory and in

several cases results in some simplifications. In each case the

x-transform of a function of time is of no more complexity than the

z-transform, and in some cases the order of the denominator of the

x-transform is one less than that of the equivalent z-transform. The

x-transform final value theorem is simply the sum of the coefficients

of the inverse x power series. In stability studies, the Nyquist path

in the x -plane is such that the one path, the unit circle centered
P

at the origin, is sufficient. A z-transform Nyquist study actually

requires two paths.

The z-transform is based on impulse modu!ation. The fact that

the sampling pulse in a practical system is not an impulse causes the

z-transform method to oive unrealistic or sometimes even incorrect

results. 18 The x-transform method, where applicable, will always give

realistic results. The x-transform method is applicable to sampled-

data systems in which each sampler is followed by a zero-order hold.

There are some manipulations with the term x in the x-transform

which require mastering before the x-transform application provides a

120
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smooth analysis. The special rule for obtaining the x-transform of a

transfer function is another possible source of error to one unfamiliar

with the transform.

It is assumed that the x-transform can be extended to the area

of nonlinear control systems; however, this is a subject for future

study.
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APPENDIX B

NUMERICAL EXAHPLES

Example 1

of

Determine by the partial fraction method the inverse x-transform

x(1 - e "aT)

E(x), :
1 - e -aT x

P

where a is a constant and T is the sampling period in seconds.

solution is as follows:

E(x) / (x0 - x) is written as

The

E(x) x(1 - e -aT )

0 -aT )(x 0 - x)
(x - x) (1 - e Xp

Through the use of the x-algebra, the above equation may be written as

0 e-aT) -aT)E(x) x x (1 - x (1 - e
P P

O 0 -aT -aT

X (I - X ) X (I - X )(I - e Xp) (I - x )(1 - e Xp)P P P

129
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Performing the partial fraction expansion yields

E(x)

0

x (I - Xp)

I I

I - X
P

-aT
1 - e x

P

Solving for E(x) gives

0
0 x - x

E(x) = x -

-aT
1 -e x

The inverse may now be determined through the use of the table in

Appendix A as

- T.Ie(t) = u(t - nT)

n=O

- U [t-(n+ ,)T]]

O0

-anT
e [u(t_°T_.uEt._n•I_T]]

Example 2

Determine by the use of the inversion formula the inverse

x-transform of

(1 e -aT )- X

E(x) =

-aT
I - e x

P



The solution is as follows:

The inversion formula is stated as

131

E(x) x -(n+l)
P

dx
P

= - _, Residues of

-(n+1)
E(x) Xp

X0 - X

at the poles of
E(x) x; (n+l)

0
X - X

Substituting for E(x) gives

= - _ Residues of
#

/ .

at the poles of

(I - e"aT ) Xp (n+1) Xp x

r_

(1 - e-aT Xp)(1 - Xp) xv

-aT -n

(1 - e ) Xp

-aT
(I -e Xp)(] - x )P

-ant
= 1 - e



Therefore,

132

m

e(t)

n--O

u(t - nT)

n=O

e"anT [u(t - nT)
- U

This agrees with the inverse transform obtained in Examp|e l, Appendix B.

Example 3

Determine by the use of the shifting theorem in Chapter II the

at
x-transform of e(t + T) if e(t) = e . The solution is as follows:

From the table of Appendix A

x0 - x

-aT
1 - e x

The shifting theorem is given as

;x-,IE(x_-e_O_(x_-x_]P

and
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e-a(t + T) = Xp

0

I X - X1 e -aT x

0
- X

Simplifying gives

-aT x 0 -aTe - e x

-aT
1 -e x

Let a = l and T = I. Then

0.368 x 0 - 0.368 x

1 - 0.368 x

0,368 x0 - 0.233 x - 0.086 x2 O.0316 x3

The inverse of the last equation is plotted in Figure 38.

0.50

0.2

0.368

-0"23310.135

.368 -0.0861 0.049
I I I I I

0 T 2T 3T 4T 5T
t

Fig. 38. -Plot of AI,dG rILe_(t+l)jillustrating the result of

using the shifting theorem for a time-advance case.
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Ex,ample 4

Determine by the use of the shifting theorem the x-transform of

-at
e(t - 2T) u(t - 2T) if e(t) = e . The solution is as follows:

From the table of x-transforms in Appendix A

0
X - X

-aT
I - e x

The shifting theorem for this case is given as

V_[e(t - 2T) u(t 2T)] : x2
P

E(x)

or

_[e-a(t- 2T)u(t- 2T)]

2
x -(x0 - x)
P

l - e-aT x

Let a = 1 and T = I. Then

_[e-(t - 2) u(t - 2)]

2 3X - X

0
x - 0.368 x

2 x 3 x4 x5= x - 0.632 - 0.232 - 0.085 - ...
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The inverse of the ]ast equation is plotted in Figure 39.

I

4-J

I

!

].00

0.75

0.50

0.25[

0

0

1.000

-0.63_

1.000

0.368

-0.232

0.136

-o.o85[ o.o51

._. I I I I2T 3T 4T 5T 67

Fig. 39. - Plot of _]_[e -(t'2) u(t-2)] illustrating the

result of using the shifting theorem in a time-delay case.

t

Example 5

Determine the initial value of e(t) = t if E(x) = Tx / (I - x).

Using the initial value theorem one obtains

I E(x) ]

lim e(t) = lim

0

t--_O x---_O x - x x0 =

lim f Tx ]
x--_O (x9 - x)2 x 0 = 1

Therefore,
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m

e(t) = 0

Example 6

0Ix
Determine the final value of e(t) = 1 - e "at if E(x) =

(x ° e-aT
1

x) / (I j- - - x) . Using the Final value theorem,

one obtains

m

lira e(t) = lira

t--_oo x--_l
E(x)I x0 : 1

i aT) 1

x(1 - e-

l e -aT
- x ,3

X = 1

or

lim

m

e(t) : 1

Example 7

Determine the x-transform of t e -at using complex translation. The

solution is as follows:

From the x-transform table
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Tx

I - x

By definition

E(x)

E' (x) -

1 - X

Tx

(1 - x) 2

From the complex translation theorem

_[te -at ] = (I - x) E'(xe -aT)

2 -aT
T(x - x ) e

,, e_aT .._2
_I - ^j

Example 8

Determine the modified x-transform of e(t) = t + T.

From the shifting theorem

-I
x E(x, m) - e(mT)(x 0 - x)



138

From the table of modified x-transforms in Appendix A

Tx 2

= Tmx +

I - X

Therefore

Tx 2

/_m It + T1 = x"I (Tmx +-- )- mT(x 0 - x)

I - X

2
x (T + mT) mTx

- X

Let m = 0.5 and T = I. Then

2
1.5 x - 0.5 x

I - X

4
= 1.5 x + x2 + x 3 + x + ...

A pIot of e(t + T) from the last equation is given in Figure 40.
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1.5

1.5

0
| I i I i I I

0 0.5T T 2T 3T 4T

Fig. 40.- Plot of _m It + I] with m = 0.5.

t

Example 9

Determine the modified x-transform if e(t - T) u(t - T) =

e-a(t - T) u(t - T). From the modified x-transform table

e-amT (x - x2)

-aT
I - e x

The shifting theorem for a time delay of one period gives

_m [e(t - T) u(t "T) 1 = x E(x, m)

and
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_m [e'a(t- T)u(t T)]

- amT 2
e x (1 - x)

-aT
1 - e x

Let m = 0.4, a = 1, and T = 1. Then

_m [ e-(t-l) u(t- I)]

0.67 x2 - 0.67 x3

1 - 0.368 x

= 0.67 x2 - 0.423 x3 - 0.156 x4 - 0.0574 x5 ....

A plot of e(t - T)u(t - T) from the last equation is given in Figure 41.

0.75

0.50

o.670

1

0.670

-0.423

0.25

0
l I I

0 0.4T T 2T

Fig.41.-Plotof_m [e'aCt'T_
a = I, and T = 1.

0.247

-0.156J 0.091
I

I I I I

3T 4T

u(t - T)] with m = 0.4,

T

t

Example 10

Determine the initial value of e(nT, m) if
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= e"roT (x - x2) / (I - e"T x).

Using the initial value theorem gives

E E(x) ]

lira e(t) = lim

t--).O m:O x(x 0 - x) 0
x--I-0 x = 1

-mT (x 0[ mex,]
m:O x (x _ -T
x--_o - x)(1 - e x) 0

x : 1

Through the use of the x-algebra, the last equation becomes

m

tim e(t) = I

t--_O

Example il

Determine the final value of e(nT, m) if

= _.m [-_-]a [u(t)- e'at] ]

-amT x 2) ]1 [ e (x -
-aT

a I e x



Using the final value theorem gives
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lim e(nT, m) = lira

n-.-.._oo x..--_.l

0 _- m c- 1 0 _- m _ 1

E(x, m) I x0 = 1

x"--_ ]
0<- m_ 1

X -

-amT . x2 ]

e (x )

-aT
I - e x

,[lim

x,---F1 a
O_ m-_ 1

-aT 2 -amT 2 -amT
x-e x - xe +x e

-aT
I - e x

]

Under the definitions of the x-algebra, the last equation becomes

lim

n_

O_m_1

e(nT, m)

1

--" n

a

Example 12

Determine the modified x-transform of e"at t using complex

translation. From the table of modified x-transforms

mTx - mTx 2 + Tx 2

1 - X
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E'(x, m)
E(x, m)

l - X

mTx - mTx 2 + Tx2

(1- x) 2

Using the complex translation theorem, one obtains

[ +at 1 +aT(m-l) +aT
m e- e(t) = e- (l - x) E'(xe" , m)

Te"amT (l - x) [e -aT x2 + mix - x2 e'aT)]

2
(I - e"aT x)


